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Coagulation and fragmentation in cluster-monomer reaction 
models 
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Department of Physics, University of Reading, Whiteknights, PO Box 220, Reading 
RG62AF, UK 

Received 1 September 1993 

Abstract. We study aggregation kinetics for a model in which both coagulation and 
fragmentation processes are present. The coagulation kernel is restricted to processes 
involving monomer-cluster reactions, and only fragmentation processes with monomer 
break-off are allowed. We consider one model in which both coagulation and fragmen- 
tation processes scale with cluster size; in another model, fragmentation is subject to a cut- 
off at a certain critical size. This resembles physical processes in which a critical nucleus 
exists. Both sourceless and with-source evolution are considered. The scaling behaviour, 
steady-state size distributions, and growth exponents are discussed. 

1. Introduction 

Aggregation processes are of widespread interest in many branches of physics, 
chemistry and biology. A key quantity is the cluster size distribution N,(t). 
Smoluchowski's coagulation equation [l] provides a widely used approach to the time 
evolution~of Ns(t) within a mean field description: 

dN,ldt=+ K , N i N J - N s ~  K s i 4  
,+i=s i 

where the coagulation kernel, Kji, is the rate constant for the merging of clusters of 
sizes i and j ,  and its functional form will depend on the diffusive behaviour of the 
clusters and on the details of the interactions between clusters. 

Much of the recent work has addressed the scaling properties of the aggregation 
kinetics. An analysis of solutions for kernels that have the homogeneity property, 
K(ai,  ai) =ai K ( i , j ) ,  has been given by van Dongen and Ernst [2]. Growth exponents 
and scaling functions were studied for the non-gelling regime (AGl).' For 2 > 1  the 
mean cluster size diverges at a finite time tc known as the gel point. Van Dongen [3] 
has shown that, in some circumstances, gelation takes place instantaneously. 

The limiting cases known as diffusion-limited cluster aggregation (DLCA) [4-61 and 
reaction-limited cluster aggregation (RLCA) [7] correspond to A = 0 and 1, respectively. 
In addition to computer simulations of various aggregation models, there have been 
attempts [S-111 to  relate^ the scaling predictions to experimental observations on 
colloidal aggregation. Droplet growth (as opposed to the fractal cluster growth of 
DLCA and RLCA) on a surface has also been studied by computer simulation [12] and by 
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experiment [13]; the former has been related to scaling behaviour as predicted by the 
Smoluchowski equation. 

The use of the Smoluchowski equation assumes that spatial fluctuations can be 
neglected. This is justified for systems with spatial dimensions larger than the upper 
critical dimensionality d,. Although for certain models d,=2, for others it can be 
arbitrarily large. The model dependence of d< has been studied by van Dongen [14]. 
Other developments in the solution of the Smoluchowski equation include a power 
series approach [15] and generalizations to higher-order kernels [16]. For certain 
physical problems alternative rate equations to that of Smoluchowski have been 
proposed [17]. 

The work listed above is concerned with irreversible aggregation. If dissociation 
(fragmentation) of the clusters is .allowed, reversible aggregation can be studied. 
Scaling laws in irreversible aggregation have been investigated by a number of authors 
[18-211 and, in particular, exponents have been obtained that relate the steady state 
distributions to the details of the coagulation and fragmentation kernels. The upper 
critical dimensionality appears to be reduced from its value in the fragmentation-free 
case. An alternative model in which fragmentation involves only monomers has also 
been investigated [22]. 

A slightly different model has been investigated by ourselves [23,24] and indepen- 
dently by Brilliantov and Krapivsky [25] and, for special parameters, by Hendriks and 
Ernst [26]. In this it is assumed that only monomers are mobile and the aggregation 
process always involves monomers. Our motivation was to obtain an understanding of 
dimensional effects on scaling during the early stages of thin film deposition. We made 
predictions about the growth exponents for island formation on thin films which 
proved consistent with experimental observations [24]. Most of the work concerned 
irreversible aggregation though a brief mention of reversible processes was also made. 
Brilliantov and Krapivsky [25] consider sourceless aggregation as well. The,purpose of 
the present paper is to explore more fully reversible aggregation in the limit in which 
monomers dominate entirely both the forward and the reverse processes. We shall 
consider two models for the reverse process and study the behaviour both in the 
absence and in the presence of a source. 
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Our basic equations are, for monomer evolution, 

dNlldt= R -2KIN: - NI K,N,+ 2N2/z2 + NJz, 
I L 2  '>3 

and, for s-mers, 

dNsldt=N1(Ks-,N,-i- K,N,) - NJZ,+N,+JZ~+~. (1.3) 
The K, are the aggregation kernels and the dissociation process is characterized by a 
size-dependent decay time r,. The source term, R, allows the injection of monomers 
into the system. As stated, we shall consider both the sourceless case (R=O) and also 
the deposition of monomers at a constant rate (R=constant). 

2. Models and units 

It is convenient to rewrite equations (1.2) and (1.3) in dimensionless units. We 
consider two different models for the dissociation process. 
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2.1. Scaled dissociation 
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The model considers both the aggregation and the dissociation processes scaling with 
cluster size 

K,= KlsP z,= zsq (2.1) 
where p and 4 are arbitrary exponents. The previous work [23-251 considered 
aggregation kernels that scaled as equation (2.1) but the fragmentation terms were not 
included. We use the following dimensionless units: 

Ks+ KI Ks Ns+ NJ(Kid t+zt z,+ zrs R+ RI( K,z*). (2.2) 

In these units, equations (1.2) and (1.3) become 

dN,ldt=R-2N:- N, z ~ P N , + 2 N z 1 2 ~ + z  NJSq (2.3r 
5 8 2  ‘83 

dN,ldt=N,{(s - l)pN,-, -sPN,}- NJSq + N,+,/(S + 1)q (2.4) 
where R is set equal to zero for the sourceless case. 

2.2. Truncated dissociation 

In this model, the aggregation process is as in equation (2.1), but dissociation is 
completely absent for clusters larger than size m; that is 

llz, = 0 fors> m. (2;5) 

No restrictions or assumptions about scaling with size are put on the z, for s e m .  Such 
a model would be relevant to a situation in which there was a critical nucleus, with 
clusters of smaller size being unstable and larger ones experiencing negligible 
dissociation. 

We again use units defined by equation (2.2), but now z has the meaning of the 
smallest (and therefore dominant) of the zs. The expressions are similar to equations 
(2.2) and (2.3), but with the z, being left in a more general form: 

~~~ 

dNlldt=R -2%- NI sPN, + 2N,l~z+ NJz,  (2.6) 

dN,ldt= N~{(S- l)’N,-] -sPN,}- N,lz,+ N3+J~r+E. (2.7) 

ss2 sa3 

R is again zero for the sourceless case and the z, are subject to the cut-off defined by 
equation (2.5). 

2.3. Moments and scaling 

We note some standard expressions in this subsection. It is usual to express the cluster 
growth in terms of moments defined by 

M, = s“N,. 
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The mean number of clusters is just the zeroth moment, MO, while the mean cluster 
size is given by 

J A Blackman and A Marshall 

S=M21M1. (2.9) 
At certain points in the development it will be appropriate to introduce a scaling 
function to describe the cluster distribution. The canonical form is 

N&) = s-'f(s/f). (2.10) 

" x'"-')f(x) dx. (2.11) 

The moments are then immediately expressible in terms of growth exponents 

I M =tz("-8+l )  

For the sourceless models, the tstal mass ZsN,=M (=MI, the first moment) is 
conserved. With the constant source, M I =  Rt. 

3. Scaled dissociation-sourceless 

We seek fist of all the steady state solutions ( R = O )  to equations (2.3) and (2.4). 
Partial zeroth moments are defined as 

(3.1) 

and their equations of motion, for n a 2 ,  are trivially obtained from equation (2.4),  

dMo(n)/dt=(n- l )PNIN,- , -Nnn-q.  (3.2) 
In the steady state, assuming no gelation, each of the Mo(n) is a constant. Hence, from 
the hierarchy of equations (3.2),  in the t+ mlimit 

N$=sq(s - l ) ! ] P + w ; .  (3.3) 
This is a detailed balance condition. We refer to a discussion by Ernst and van Dongen 
[20] about the applicability of detailed balance in homogeneous kernel models. From 
equation (2.8),  the moments can be written, 

The types of solution depend on the sign of p + q. We consider p + q = 0 first, for 
which scaling solutions occur. 

3.1. p + q = O  
Since, from equation (3 .4) ,  

analytic solutions are possible in terms of standard series for a range of integer values 
of p .  A few of these are examined prior to considering the general case. 
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p=O. For p=O, we easily obtain Mu=Nl(T-Nl)-’. M,=N,(l-N,)-*, M2= 
N,(1+ NJ(1- 

NI =[1+1/(2M)]-[1/M+1/(4M2)J“2 (3.6a) 

MO= (M + i)’” - 4 (3.6b) 

S=(4M+l)”’. ( 3 . 6 ~ )  

and, using the boundary condition MI= M, one gets 

Thus. in the small-M limit, 

NI+M MO+ M s-t 1 (3.7) 
while. for large M. and using equation (3.3), 

NI+ 1 - M-’”=exp(-l/M1’’) (3.8a) 

N,+exp(-slM”’) (3.8b) 

MU+M1’? (3.8~) 

S-t 2M”’. (3.84 
Evidently the behaviour is most interesting when there is a large initial concentration 
of monomers (large-M h i t ) .  It is instructive to sumniarize analytic results for a 
couple of other values ofp. 

p =  1. The following exact expressions are obtained: 

NI= M/(l+ M) (3.9a) 

M,=ln(l+M)~ (3.9b) 

S = l + M .  (3.94 

The small-M h i t  is as in the p =  0 case (see equation (3.7)) while, for large M, 

NI+ exp(- U M )  (3.10~) 
N,+s-’ exp(-s/M) (3.106) 

M-tlnM (3.10~) 

S+M. (3.104 

The appearance of logarithmic terms suggests that p = 1, q = - 1 is a critical case. 

p = - 1. Again at small M, the results of equation (3.7) apply. In the large-M limit, 

N,+exp[- (2/M)1’3] (3.11u) 

Ns+s exp[ -s(2/M)’”] (3.11b) 

M~+(M/Z)’/~ (3.11~) 

S-t 3(M/2)1’3. (3.11d) 

p<l .  Equation (3.7) appears to represent the small-M limit generally, and we will not 
explore that case any further. We present a general development for the large-M 
behaviour in the p < l  regime. As a generalization of equations (3.9a), (3.10a), and 
(3.11~), it is assumed that we can write 

NI = 1 - $ = exp(-$) a (3.12) 
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Figurel. Plot of In[Ns(f)suz] againstsfor theparametersp=OS, M=200, f=5ooo. Data 
points are from numerical integration of rate equations. The full line represents equation 
(3.16~~). All units are dimensionless. 

where @ is a small quantity that scales as some negative power of M. Thus, from 
equations (3.3 and 3.5) 

(3.13) 

and, replacing the sum by an integral, 

M, = Qp-"-L 1; qn-p exp(-q) dq. (3.14) 

The integral in equation (3.14) is the gamma function and so we can write 

M.=r(n-p+ l ) ( l -~~)-("+~-~) .  (3.15) 

Hence, from equations (3.3) and (3.15) and the condition M l = M ,  we obtain the 
following results for the large-M limit: 

NS+s-p exp[-s{r(2 -p)IM}"e-P)] (3.16a) 
M~+ [qn + 1 -p)/r(2-p)t("+1-~)/(2-~)i IM ((n+l-p)/P-p)} (3.16b) 

and, specifically, 

M ~ +  [r(l -p)/r(2 -p)((l-~)~(2-~)}]~~(I-~)~(Z-~)l ( 3 . 1 6 ~ )  

s+ [ r (3  -p)ir(2-p) ((3-P)/(2-P)I]M(l/(z-P)}. (3.16d) 

The equations reduce in the appropriate limit to the special cases discussed. N, 
exhibits scaling behaviour (equation ( 3 . 1 6 ~ ) )  with the total number of particles, M, 
taking the place of time in the canonical scaling form (equation (2.10)). To demon- 
strate this, the rate equations have been solved numerically (to a sufficiently high level 
in the hierarchy for a cut-off not to affect the outcome) and the results are shown in 
figure 1 for p =0.5 and M=200. The data points are displayed for t=5000, by which 
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time we are very close to the asymptotic limit. Equation ( 3 . 1 6 ~ )  is represented by the 
full line with negative slope of magnitude {r(2-p)lM}"('-p); the value is 0.02698 for 
the parameters used. 

If we write (2-p)- '=y and return to the original units (see equation (2.2)),  we 
obtain Mo-(K1z)-Y and S - ( K , Z ) ~  My. This can be compared with the scaling 
form obtained with the homogeneous coagulation and fragmentation kernels (see 
equation (20) of [18], for example). 
l < p < 2 .  Equations ( 3 . 1 6 ~ )  and ( 3 . 1 6 ~ )  are still valid when the exponent p lies 
between 1 and 2. Care has to be taken. however, in evaluating MO because the integral 
in equation (3.14) is divergent at the lower h i t  for n=O. From equations (3.13) and 
(3.16u), terms can be regrouped to give 

M~ = 2 S-P{I - [I - exp[-s{r(2 -p)/~)"(~-p)]]}. (3.17) 

The first term in this expression is the Riemann zeta function, and the remaining part 
can be written as a well-behaved integral: 

3 

Mo=(@)-{r(2-p)/M)'p-')'(2-p) y-"l -exp(-y)] dy .  (3.18) 

The integral in equation (3.18) can be written in terms of a gamma function, yielding 
~ , = ( ( P ) - ~ ( ~ - ~ ) I / ( Z - P ) / [ ( P -  ~ ) M ~ - I ) K - P )  I. (3.19) 

I: 
p=2.  One immediately obtains Mz=Nl/(l-Nl) andM,=-ln(1-NI), so that 

NI= 1 - exp(-M) (3.20a) 
S =  [exp(M) - 1]/M (3.206) 

and, from the series for Ma. to leading order in M ,  
dMo/dM = M exp( -M) . 

Integrating this expression and noticing that MO is a zeta function in the M+ m limit, 
the final expression for MO in the large-M limit is 

MO = ( ( 2 )  - M exp-M). (3.20c) 
p = 1 marks a critical point in the dissociation-free model as reported by Brilliantov 

and Krapivsky [XI, and for larger values ofp instantaneous gelation takes place. The 
behaviour is somewhat different when dissociation is present and it appears that p = 2  
is the corresponding critical value in this case. The regime 1 < p  Q 2 is an unstable one, 
however. The solutions just discussed for this regime are indeed steady state 
solutions, but they are not stable. A monodisperse initial distribution does not 
approach the steady state in the asymptotic limit (unlike in the p < 1 regime), nor is a 
system prepared with a distribution matching the steady state stable against small 
perturbations. Although there are steady state solutions, their instability appears to 
lead to a violation of mass conservation after a time interval that depends on both p 
and M .  This will be explored in more detail elsewhere. 

3.2. p + q < O  
To make progress with the evaluation of equation (3.4) for negative (p + q) in the 
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large44 limit, we assume that it is possible to develop an expansion about the largest 
term in the summation. This is a reasonable procedure if NI-+ m as M+ m . The 
analysis, in fact, yields an N I  which varies as a power of In M so justifying the method 
a posteriori. 

J A Blackman and A Marshall 

Using Stirling's formula on equation (3.4) 
m 

M, p n ) - I ~ + q l / 2  2 e l ~ + ~ l ~ ~ ; s 4 + ~ - l ~ + 9 1 ( ~ - l ~ ~ ) .  (3.21) 
5=1 

Let us denote the largest term in the summation as To; it occurs at s=so, where 

s 0 -  - N p + q l ,  (3.22) 

Expanding about so, the summation in equation (3.21) can be written as a Gaussian 
integral, 

Mn=(2z)-IP'qI~zTo dsexp[ - Ip+q1(s-~~)~/2s , ]  (3.23) i 
which gives 

Mn= (2z)-(lP+91-1){21p +ql-"2 e"Nf (3.24) 

where 

a = Ip + qINf'b+qI p =++ (+ + q + n)/lp + q / .  (3.25) 

Examining the dominant behaviour of the moments, we obtain finally for the large-M 
limit 

NI-+[In M/lp+ql]b+ql (3  .26a) 

Mo-+~p+qlM/ln M (3.26b) 

S+ In M/lp + 41. (3 .26~)  

3.3. p+q>o  

In this regime there are no values of N, that provide a solution to equation (3.4) with a 
finite value for the first moment. This implies the absence of steady state solutions. 
Gelation takes place with the formation of an infinite cluster. Note this is a behaviour 
that is distinct from that occurring in thep+q=O, 1 <p<2 regime. In that case, there 
are steady state solutions but they are not stable; here no steady state solutions exist. 

4. Scaled dissociation-with source 

As in the sourceless case, the balance between coagulation and fragmentation when 
p + q = 0 leads to scaling solutions, but here time t rather than M is one of the scaling 
variables. 

4.1. p + q = 0 
An equation for the zeroth moment can be obtained from equations (2.3) and (2.4): 
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dMoldt= R -  N,M,- NI+ M,. (4.1) 
Assuming that Mp vanes as a positive power oft, the second and fourth terms on the 
right-hand side of the equation are dominant asymptotically. This requires that 
NI+ 1. Now, to get a condition on the other N,  a partial moment equation is formed 
like equation (3.2): 

dMo(n)ldt = (n - 1)’NINn-1 - nPNn ( 4 4  

N,-s-p. (4.3) 

Since N,+ 1, this equation provides the general asymptotic behaviour: 

It is convenient to write N, at arbitrary time in the f o h  of a product of the asymptotic 
limit and some time-dependent function: 

N, = Ass-’ (4.4) 
where As= 0 at t =  0 and As+ 1 as f+ a. Then equation (2.4) can be expressed in the 
tidy form 

s-’ dA,/dt= Al(As-I-Ax) 7 (AS-As+1). (4.5) 
Considering As as a continuous function of s and retaining leading terms, we can 
rewrite this as 

s-’8ASl8t=(1 -A1)8A,l& +-;.(1+ A,)a2AJ8s2 (4.6) 

A1 = 1 - d t ‘  (4.7) 

Now, assume that A I  approaches 1 as a power o f t  

where a is a complicated function of R. We discuss the behaviour for a specific value 
of p later. Then to leading order 

This is an equation that admits scaling solutions and so As is written in the standard 
scaling form 

s-P8AJat = a/tVA,/as + a2A.,18s2. (4.8) 

As = Kaf (slt‘) (4.9) 

d2f df -+(a + zx1-p- zex-1) -+ e[(e + 1)x-l- a]x-y= 0. 

from which one obtains the following equation for the scaling functionf(x): 

(4.10) dn’ dx 

In forming this equation the following scaling relation has been used 
z = r =  (2 - p ) - ’ .  (4.11) 

A further scaling relation arises when we employ the boundary condition, MI=Rt,  
e=o. (4.12) 

The moments are again given by equation (2.11) and so, from equations (4.4), (4.11) 
and (4.12), 

Mn I t(”+l-P)’b-P) (4.13) 

(4.14~) 
(4.14b) 



734 

For p equal to 1 the zeroth moment vanes like In t. 
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Since e = 0, equation (4.10) simplifies to 

d'f df -+ (a  + zxl-p) -= 0 dx2 dx (4.15) 

which can be integrated to give 

(4.16) 

where A is a constant whose value is determined by boundary conditions. To satisfy 
the asymptotic limit, we require that f ( 0 )  = 1 while, to deal with the small-t limit as 
well, it is necessary that f (m)=O.  There are two cases where f ( x )  can be obtained 
analytically. 

p = l .  From the scaling relation (4.11), z=1,  and equation (4.16) has the trivial 
solution 

(4.17) 

df - = A e x p [ - ( a x + ~ ~ x ~ - ~ ) ]  
dx 

f ( x )  = exp[-(a + l)x]. 

The constants of integration have been chosen to satisfy the f(0) andf(m) limits. 

p = 0. In this case, I =4 from the scaling relations, and equation (4.16) is in a standard 
form for an error function solution. Again thef(0) andf( m )  limits are satisfied, with 
the result 

(4.18) 

Let us explore this case in greater detail. The moments can be written as Mn= 
Q,$("+l)n where Q,,=2"+' J; x"f(x) dx. Now, there are conditions that the first two 
moments must satisfy. The first moment is determined by the rate at which particles 
are injected, and so Ql=R. In addition to obtaining the leading term in NI from 
equation (4. l ) ,  that expression also leads to the condition Qoa + R - 1 = 0 when p = 0. 
Using equation (4.18), it can be shown that both of the conditions are satisfied if 

R= 1 +2a*-2a~-"~ exp(-a')/erfc(a). (4.19) 

Thus, consistency is demonstrated and equation (4.19) enables one to relate a to R. 
The results are illustrated in figure 2. We have solved the hierarchy of rate equations 
numerically, and have plotted the data obtained as N, versus s/t"2 for a number of 
different times. The results fall on a good universal curve and fit well to the functional 
form of equation (4.18). 

f(x) = erfc(d2 + a)/erfc(a). 

4.2. p + q # 0  

It will be noticed that, for p+q=O, the M dependence of the moments in the 
without-source case and their t dependence in the with-source case (see equations 
(3.16) and (4.14)) are of the same functional form. By analogy, we adapt equations 
(3.26) for the with-source case in thep+q<O regime as follows: 

(4.20a) 

(4.20b) 
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FigureZ. Plot of Ns(t) against sit"' for the parametersp=O, R =  1. Data points are from 
numerical integration of the rate equations. Three different times are represented filled 
circles, t= 100; filled triangles, t=200; open circles. t=500. The continuous curve is that 
given by equation (4.18) with a set equal to zero in accordance with equation (4.19). All 
units are dimensionless. 

Their validity has been checked by numerical solution of the hierarchy of the rate 
equations. Similar considerations apply in the p + q > O  regime to those already 
discussed in section 3.3. 

5. Truncated dissociation-sourceless 

The behaviour discussed in section 3 where the distribution function and moments 
were scaling functions'of M (see equations (3.16)) is a consequence of aggregation and 
fragmentation processes both being present in the rate equations for all sizes of 
cluster. When aggregation alone occurs, both the N, and the moments scale simply 
linearly with M .  This also occurs with truncated dissociation as we shall now 
demonstrate-but only in the limit of large M .  First let us consider the dissociation- 
free case to see the reason for the trivial linear scaling. 

The time evolution (for sZ-2) is governed in the fragmentation-free case by the 
equation 

dN,/dt=N,{(s- l)pNs_,-~pNs}. (5.1) 
In the absence of a natural unit of time like 5, we can regard f as the true time rather 
than a rescaled dimensionless unit as in equation (2.2). Now the cluster distribution is 
a function of time and the initial conditions, N,=N,(t, M) where N,(t=O, M )  =M&,.  
A rescaling of the variables, N,-AN,, M - t A M ,  t+t/d, leaves both equation (5.1) 
and also the equation for dN,ldr invariant. Thus we obtain the relation 

N,(t/A, AM) ="(t, M ) .  (5.2) 
In the large-time limit, Ns(c+ , A M )  = A N s ( t 4  a, M ) ,  demonstrating that the steady 
state distribution function and consequently also the moments scaie simply with the 
number of particles in the system. 



736 J A Blackman and A Marshall 

In the case of truncated dissociation, the equations governing the cvolution are 
equations (2.6) and (2.7). The cluster distribution now depends on r,(2SsGm), and 
the relation that is equivalent to equation (5.2) is 

N W ,  W { ~ J A H = W ( &  M ,  {z,H (5.3) 
which is not particularly helpful. 

equation, for 2 S n S m  (from equation (2.7)) is 
Instead, let us consider partial zeroth moments as defined in equation (3.1). The 

dMo(n)ldt = (a - 1)PN, Nn-l - N,I s. (5.4) 
while, for n>m, the second term on the right-hand side is absent. For a steady state 
solution, the partial moments approach a constant value and so the left-hand side of 
equation (5.4) goes to zero in the large-time limit. For n>m, this implies that NIN,c- ,  
also approaches zero. This has to be a result of the behaviour of N I ,  so NI+O. Then, 
using equation (5.4) for n=2, we obtain N,+O in the asymptotic limit and so on for 
successive values of n while nSm. So in the large-time limit, N,+O for s s m ,  while 
the N, appoach constant values for s>m. The steady state moments are determined 
by the clusters larger than m. 

The time evolution can be considered in two stages. In stage 1, if the initial value 
of N I  (namely M )  is large, then the coagulation terms in equation (2.7) will dominate 
over the fragmentation terms. By large, we mean M>>z-l. So during this stage (which 
lasts for a time, call it to, of order InM in the dimensionless units used), the 
development follows the fragmentation-free behaviour and equation (5.2) holds. At 
the end of the stage, NI has been reduced from M to a value of order z-', and the 
other N, (s> 1) are O ( M ) ;  let us denote their values by Mn, where n, where n, is O(1). 
In fact, the n, are essentially the asymptotic values for real fragmentation-free 
aggregation [25]. 

Now we focus on stage 2 (starting at to), during which the N, (sem) reduce to zero, 
while the N, (s>m) approach their final asymptotic value. Consider the partial zeroth 
moment Mo(m+ 1). Its value at to is Mnu where 

s l m t l  

and integrating,equation (5.4) between to and C O ,  

MO - Mno = MmP (5.6) 

Mo(m+ 1) is just MO is the asymptotic limit. Both N I  and n, are 0(1) at to reducing to 
zero at - and have very weak dependence on M .  We have demonstrated, therefore, 
that M u  scales linearly with M .  Note, the argument relies on M>>r-', because it is 
necessary to be able to set up a cluster distribution scaling linearly with M at the end of 
stage 1. 

The scaling of the moments with M is illustrated in figure 3 by means of numerical 
solutions of the rate equations. M21M and M l M l  are plotted against time for three 
values of M .  It can be seen that the asymptotic values are approaching a constant limit 
as M is increased. Having established the behaviour, the sourceless model will not be 
pursued further. 
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M2/M 
8.5- .................................................................. _ _ _ - _ _ _ - - _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _  

..................................................................... -_-------- - - -_-____----  
M/MO 

5.5 : , I I I I I I I t I 
5 10 15 20 25 30 35 40 4 5 ~  50 

t 
Figure3. Plots of MJM and M I M ,  against t for parametersp=O, m=4, z2=r,=z4=l,  
Full lines, M=1500; broken lines. M=1000; dotted lines, M=500. All units are dimen- 
sionless. 

6. Truncated dissociation-with source 

A preliminary report of this case was given earlier [23]. We develop the discussion 
more fully here, particularly with regard to the logarithmic time dependence occurring 
at a critical value of p .  Let use assume that asymptotically the monomer distribution 
falls o f f  algebraically with time, N,-t-’. Now, from equation (2.7) for N2, 

(6.1) dN,ldt= N: - KZNjNz- NZhZ + N& 

it can be seen that to leading order in t-‘, Nz - t?, or Nz = r2N:. ~Similarly, from 
equation (2.7) for arbitrary s (am), we obtain, to dominant powers of t - I ,  the relation 
Ns=Ks~lzsNINr~,,  andso f o r s s m ,  

N, - t-*‘ (6.2) 
To obtain an expression for the zeroth moment, we sum equation (2.7) over all values 
of S greater than m and add the remaining terms to complete the series: 

dM,ldt= K m N I N m + C  dNJdt. (6.3) 
ssm 

The first term dominates at large t if mr< 1 (it will be seen shortly that this condition is 
fulfilled over a certain range of p ) .  Assuming that a scaling form for N,(t) applies 
asymptotically, we obtain from equations (2.11) and (6.3) the scaling relation 

(m+ l ) r =  1-z(1-e). (6.4) 
The first moment, MI, is equal to Rt for the source model used so that, from equation 
(2.1% 

~ ( 2  - e) = 1. (6.5) 
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The final equation needed is one for the general moment. Again it is obtained from 
equation (2.7) and, if only leading terms are retained, it takes the form 
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dM,ldr=nNIM,+p-,. (6.6) 
An expansion in powers of s-' has been done, and terms like s" dN,ldt have been 
neglected for the same reason that similar terms were discarded from equation (6.3). 
Now, using equation (2.11), this gives the final scaling relztion 

z ( 1 - p )  = 1-r. (6.7) 
Thus from equations (6.4), (6.5) and (6.7) we get values for the three exponents 

r=(m+l ) [ (m+2) - (m+l )p] - '  ( 6 . 8 ~ )  

0 = m l ( m  + 1) + p  (6.8b) 
r= [(m +2)  - (m+ 1)pI-l. (6.84 

The validity of equation (6.2) required that mr<l; it can be seen that this is true, at 
least forp <2/ (m + 1).  From equation (2.11) we can now write the moments generally 
and the cluster density and size in particular in the asymptotic limit as 

(6.9) M,+ tKm+ 1)n t 1- (m+ l ) ~Y l (m +2)-(m +  PI 

M~+ t[L-(m+ W K m  +2) - (m+ llpl 

s+ tlmi 1YKm +I)  - lm+ llpl 

(6.10a) 

(6.10b) 

These exponents agree with those obtained in the disssociation-free limit [23]. 
These relations are valid for p < l / (m + 1). At that limit the exponent in equation 

(6 .10~)  goes to zero. This is, in fact, indicative of logarithmic behaviour and it is 
necessary to consider that regime p U ( m +  1) separately. Thep > l ( m +  1) regime is 
examined first. The main point is that MO is approaching a constant value and so we 
make the assumption that we can write 

Mo=constant-alt" (6.11) 

where w is another exponent and a is some constant. The conditions necessary for the 
validity of equations (6.5) and (6.7) are unaffected, but the new form of MO leads to a 
different scaling relation to equation (6.4). First, we require 

z (1-0)=0 (6.12) 

to satisfy equation (2.11). The exponents are now 

0 = z = l  (6 .13~)  

r = p .  (6.136) 

Using equation (6.3), and matching leading powers oft-', one obtains conditions for 
w, namely ( q + l ) = ( m + l ) r  if ( m + l ) r < ( r + l ) ,  or q=rotherwise. This leads to 

w =  (m + 1)p - 1 if (m+l)-'<p<m-' (6 .13~)  

w = p  if m-'<p<l .  (6.13d) 

The moments for p>ll(m+ 1)  are, therefore, simple power laws in order of the 
moment 

M"+i". (6.14) 
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The final situation to address is the critical value p = l / ( m + l )  itself. We are 
dealing with logarithmic corrections and so start with the assumption that we can write 

~ ~ - r - N m + 1 ) ( 1 ~  t)# ~’ (6.15) 
M. -f‘(ln r)9(“’. (6.16) 

From equations (6.6) and (6.3) we get the relations 

y(n) = @(n -ml(m + 1)) + @ (6.17) 

y(0)- 1 =(m+ l)$ (6.18) 

and, from M I  = t ,  

@(I) =o. (6.19) 

Equation (6.17) suggests that one can write 

+(n + 6) = +(n) + @d(m + l ) / m  

and, to obtain consistency with equations (6.18) and (6.19), 

(6.20) 

$= - m / ( m  + I)* (6.21) 

Thus 

y (a) = (1 - n)/( m + 1) (6.22) 

and the cluster density and size can be written asymptotically as 

M ~ -  ( ln7)l / (m+l)  (6.23~) 

S-t(ln t)-”(m+’). (6.236) 

Again the dissociation-free limit [23] is obtained by setting m+l .  

7. Conclusion 

We have studied scaling behaviour in models based on the Smoluchowski equation in 
which monomers play a primary role in both aggregation and dissociation processes. 
In the first model the reaction kernels scale as some power of cluster size, while in the 
second no dissociation processes occur in clusters larger than a certain critical size. 
When a source is present, growth exponents are found in both models for a range of 
parameters that admit scaling solutions. Non-scaling solutions are also examined. 
Both scaling and non-scaling solutions (with particle density as one scaling parameter) 
are found in the sourceless version of the first model. 

The models provide an interesting alternative limit to the extensively studied ones 
with homogeneous kernels and cluster-cluster interactions on all size scales. 

There are some important issues that need addressing as a follow-up to this work. 
As stated in the paper, there is a certain range of parameters where one encounters 
breakdown of mass conservation. Although these are not in the physically interesting 
parameter range, the regime merits exploration as a mathematical example of a 
situation producing gelation. Finally, the work reported here uses mean field equa- 
tions and it is not clear under what conditions fluctuations can be neglected; the upper 
critical dimensionality needs to be determined. We intend to report on these matters 
later. 
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